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Periodontal tissue activation by vibration:
Intermittent stimulation by resonance vibration
accelerates experimental tooth movement in
rats
Makoto Nishimura,a Mirei Chiba,b Toshiro Ohashi,c Masaaki Sato,d Yoshiyuki Shimizu,e Kaoru Igarashi,f and
Hideo Mitanig

Sendai and Fukushima, Japan

Introduction: Accelerating the speed of orthodontic tooth movement should contribute to the shortening of
the treatment period. This would be beneficial because long treatment times are a negative aspect of
orthodontic treatment. In this study, we evaluated the effects of mechanical stimulation by resonance
vibration on tooth movement, and we showed the cellular and molecular mechanisms of periodontal ligament
responses. Methods: The maxillary first molars of 6-week-old male Wistar rats were moved to the buccal
side by using an expansive spring for 21 days (n � 6, control group), and the amount of tooth movement was
measured. Additional vibrational stimulation (60 Hz, 1.0 m/s2) was applied to the first molars by using a
loading vibration system for 8 minutes on days 0, 7, and 14 during orthodontic tooth movement (n � 6,
experimental group). The animals were killed under anesthesia, and each maxilla was dissected. The
specimens were fixed, decalcified, and embedded in paraffin. Sections were used for immunohistochemical
analysis of receptor activator of NF kappa B ligand (RANKL) expression. The number of osteoclasts in the
alveolar bone was counted by using TRAP staining, and the amount of root resorption was measured in
sections stained with hematoxylin and eosin. Results: The average resonance frequency of the maxillary first
molar was 61.02 � 8.38 Hz. Tooth movement in the experimental group was significantly greater than in the
control group (P �.05). Enhanced RANKL expression was observed at fibroblasts and osteoclasts in the
periodontal ligament of the experimental group on day 3. The number of osteoclasts in the experimental
group was significantly increased over the control group on day 8 (P �.05). Histologically, there were no
pathological findings in either group or significant differences in the amount of root resorption between the
2 groups. Conclusions: The application of resonance vibration might accelerate orthodontic tooth move-
ment via enhanced RANKL expression in the periodontal ligament without additional damage to periodontal

tissues such as root resorption. (Am J Orthod Dentofacial Orthop 2008;133:572-83)
Orthodontic tooth movement is generated by the
coupling of bone resorption on the compressed
side of the periodontal ligament (PDL) and by

bone formation on the stretched side of the PDL as a
consequence of therapeutic mechanical stress. Since
orthodontic treatment usually takes place over a long
period of time, the problems of caries, periodontal
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disease, and prolonged treatment period are burden-
some for the patient. Furthermore, it has been reported
that total treatment duration proves to be highly corre-
lated with root resorption.1 In this respect, it is impor-
tant to accelerate alveolar bone remodeling during
orthodontic treatment, to shorten the time required for
successful therapy.

To date, to accelerate tooth movement, physical
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approaches with low-energy laser irradiation2 and mag-
netic fields,3,4 as well as pharmacological approaches
with the injection of prostaglandin E2 (PGE2)5-7 and
1,25-(OH)2D3

8-10 during tooth movement, have been
investigated. However, many side effects, such as local
pain, severe root resorption,11 and drug-induced side
effects12 have been reported.

The initial response of cells to mechanical stress in
vitro appears within 30 minutes.13-15 We have at-
tempted to activate these initial responses at the cellular
level by applying resonance vibrational stimulation to a
tooth and its periodontal tissue. Moreover, the loading
of resonance vibration that is equal to the natural
frequency of the first molar and its periodontal tissue
stimulates more effectively the periodontal tissue.16

Thus, we hypothesized that the application of reso-
nance vibration during orthodontic tooth movement
should affect the acceleration of tooth movement by
increasing the activity of the cells in the PDL.

Our aims in this study were to investigate the

Fig 1. Resonance vibration delivery system:
controller; D, charge amplifier; E, acceleromet
effects of stimulation by resonance vibration on the
speed of tooth movement and root resorption during
experimental tooth movement in rats, and to elucidate
the cellular and molecular mechanisms underlying the
acceleration of tooth movement.

MATERIAL AND METHODS

We developed a vibration-imposed system (in con-
junction with IMV Corp, Osaka, Japan) that enables us
to apply a forced vibration with continuously changing
frequency onto the teeth, and to measure the natural
frequency of the teeth and periodontium. This system
comprises a vibration controller (RC-1120; IMV), a
power amplifier (PET-OA; IMV), a charge amplifier
(5011B; Kistler Instrumente AG, Winterthur, Switzer-
land), and a vibrator (PET-01; IMV) (Fig 1). A force
sensor (Kistler Instrumente AG) and an accelerometer
(Endevco, San Juan Capistrano, Calif) were built into
the top of the vibrator. The top of the vibrator was fixed
on the rats’ first molars with an adhesive (Superbond;

all vibrator; B, power amplifier; C, vibration
force sensor.
A, sm
Touagousei, Tokyo, Japan). The signals from the force
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sensor and the accelerometer were transferred into the
vibration controller.

The vibration was applied by the control signal
through the power amplifier controlled by the output
signal from the accelerometer, thereby maintaining the
acceleration at 1.0 meter per square second (m/s2).

The amplified signal was then transferred to the
vibrator, causing its excitation. The change in fre-
quency response of the specimen can be detected
simultaneously. The vibration tests were carried out for
5 minutes, and the resonance curves were displayed as
frequency-force relationships on the monitor of the
vibration controller.

The animals were treated according to the Guide-
lines for the Use of Experimental Animals of the
Animal Care and Use Committee of Tohoku Univer-
sity, Graduate School of Dentistry. Six male Wistar rats
(Japan SLC, Shizuoka, Japan) were used for the mea-
surements of resonance frequency in the their first
molars. The heads of the rats were fixed on the
stereotaxic frame (SR60; Narishige, Tokyo, Japan)
under anesthesia from intraperitoneal injection of so-
dium pentobarbital (50 mg per kilogram of body
weight). The excitation rod was fixed to the first molar
perpendicular to the occlusal plane with adhesive, and
the resonance frequency of the first molar was mea-
sured (Fig 2, A).

Generally, the relationship between displacement
(X) and the ratio of frequency (ie, natural frequency) is
shown in Figure 2, B. This system encounters a
condition of resonance at the maximum amplitude. In
this study, because the frequency of forced vibration
was controlled at 1.0 m/s2, and, taking F � kX and F �
ma into consideration, the relationship in Figure 2, B,
can be replaced with the relationship in Figure 2, C,
where m is the mass of the system, k is the spring
constant, X is the maximum displacement, and F is the
externally applied force. Consequently, the resonance
frequency should be minimal in Figure 2, C. Figure 2,
D, was the resonance curve displaced on the monitor of
the resonance vibration delivery system.

In total, 42 male Wistar rats were used; 12 rats for
measuring tooth movement and 30 rats for histological
examination.

To measure tooth movement, we used 12 male
Wistar rats (age, 6 weeks) with an average weight of
150 g. The animals were adapted to a 12/12-hour
light/dark cycle (with light from 07:00 to 19:00) for a
week in a room at 25°C and 55% humidity. They were
given laboratory chow (Funabashi Farms, Funabashi,
Japan) and deionized water ad libitum.

The rats were divided into 2 groups of 6 animals

each: the resonance vibration group (RV-group),
loaded with the resonance frequency, and the control
group (C-group). In the RV-group, a uniform standard-
ized expansive spring17 made of 0.012-in nickel-tita-
nium wire (Nitinol Classic; 3M Unitek Dental Prod-
ucts, Monrovia, Calif) was placed between the
maxillary right and left first molars (Fig 3, A and B),
and used to move the teeth in the buccal direction for 21
days. The load-deflection curve of the expansive spring
was examined by using a creep meter (RE2-33005S;
Yamaden, Tokyo, Japan). The load-deflection curve is
shown in Figure 3, C. The initial expansive force to
each tooth generated by the spring was an average of
12.8 gram force. The wire was retained in the mouth by
its own force. Resonance frequency was loaded perpen-
dicularly on the maxillary molars for 8 minutes once a
week after removing the expansive spring under gen-
eral anesthesia with intraperitoneal injection of sodium
pentobarbital (50 mg per kilogram of body weight).
After loading of resonance frequency, the adhesive was
removed from the occlusal surface completely, so that
it did not interfere with occlusion.

The C-group had the same procedures except that
the machine was not turned on.

Displacement of the maxillary first molars was
measured on days 0, 3, 7, 10, 14, 17, and 21, after
application of the expansive force. The animals were
anesthetized lightly with ether, and precise silicone
impressions (G-C Dental Industrial, Tokyo, Japan) with
resin trays were used to produce a stone model of each
rat’s maxillary dentition. The base of each stone model
was trimmed to parallel the occlusal plane and then set
on the stage of a profile projector (V-16D; Nikon,
Tokyo, Japan); it was subsequently magnified 10-fold
on a screen with reflected light. A tracing of the
occlusal view of a precise plaster model of the maxil-
lary dentition was magnified 10-fold. The contours of
the palatal cusps of the second and third molars of these
tracings were then superimposed on those traced from
the initial plaster model. The distance between the
mesiopalatal cusp crest of the first molar before and
after tooth movement was measured with sliding cali-
pers. Tooth movement alone, excluding growth of the
midpalatal suture, was measured by superimposing the
contours of the second and third molars. The values
obtained for the right and left first molars were summed
for each animal.

Thirty male Wistar rats were used for the histolog-
ical examinations. Twenty-seven rats were divided into
2 groups, with 13 animals in the RV-group and 14
animals in the C-group. Animals from each group were
killed on days 3, 8, and 15 (3 animals, respectively) and

on day 21 (4 animals in the RV-group and 5 animals in



American Journal of Orthodontics and Dentofacial Orthopedics
Volume 133, Number 4

Nishimura et al 575
the C-group), after application of the force. The remain-
ing 3 animals served as the day 0 control.

After the 21-day experiment, the animals were
killed by using intraperitoneal injection of sodium
pentobarbital (50 mg per kilogram of body weight), and
the tissues were fixed by perfusing the animals through
the ascending aorta with 4% paraformaldehyde in 0.01
mol/L of phosphate buffer (pH 7.4). The maxillary

Fig 2. Resonance curve: A, schema of buccal
the first molar perpendicular to the occlusal p
displacement (X) and the ratio of frequency (�/�
and the ratio of frequency (�/�n). D, The res
resonance vibration delivery system. The horiz
axis shows the force (N). Arrowhead, natural fre
molar.
jaws, including the molars, were dissected, fixed over-
night at 4°C, and decalcified in 10% EDTA in PBS.
They were then dehydrated in a graded series of ethanol
and embedded in paraffin. The embedded specimens
were cut into serial 5-�m-thick cross-sections perpen-
dicular to occlusal plane. The sections were stained
with hematoxylin and eosin. The mesiopalatal root of
the maxillary first molar was evaluated for root resorp-
tion.18 Microscopic images taken directly from a high-

n in rat molar. The excitation rod was fixed to
ith adhesive. B, The relationship between the
The relationship between the exciting force (F)
ce curve is displaced on the monitor of the
xis shows the frequency (Hz), and the vertical
y; M1, first molar; M2, second molar; M3, third
sectio
lane w

n). C,
onan

ontal a
quenc
resolution monitor with a CCD video camera (Cool-



American Journal of Orthodontics and Dentofacial Orthopedics
April 2008

576 Nishimura et al
SNAP; Olympus, Tokyo, Japan) were analyzed by
Scion-image (Scion, Frederick, Md). The areas of root
resorption in the right and left sides of each section
were averaged, and the values for 8 sections, selected at
50-�m intervals from the root bifurcation (interradicu-
lar region), were averaged for each animal.

The sections were stained for tartrate-resistant acid
phosphatase (TRAP) activity using the acid phosphate
leukocyte kit (Sigma Chemical, St Louis, Mo), to
identify the osteoclasts. The osteoclasts on alveolar
bone surfaces or in bone-resorptive lacunae at the
pressure side were counted in each section on days 8,
15, and 21. Osteoclasts were recognized as TRAP-
positive multi-nucleated cells. The numbers of oste-
oclasts on the right and left sides of each section were
initially averaged. The values obtained for the 8 sec-

Fig 3. A, Expansive spring placed between th
uniform standardized expansive spring was
deflection curve of the expansive spring. M1,
gram force.
tions selected at 50-�m intervals from the root interra-
dicular region were subsequently averaged for each
animal.

The sections were processed for immunocytohisto-
chemistry. To inhibit the endogenous peroxidase activ-
ity, dewaxed sections were treated with 0.3% hydrogen
peroxide in methyl alcohol. After blocking nonspecific
reactivity by treatment with 10% bovine serum albumin
in PBS, the sections were reacted with goat polyclonal
antibodies directed against human RANKL (Santa Cruz
Biotechnology, Santa Cruz, Calif) at a dilution of 1:100
for 24 hours at 4°C. After washing in PBS, the sections
were incubated with peroxidase-conjugated donkey
antigoat IgG (sc-2020; Santa Cruz Biotechnology) for 1
hour at room temperature. To visualize immunoreac-
tivity, the sections were flooded with a solution of
diaminobenzidine. Counterstaining for light micros-

illary right and left first molars of the rats; B,
of 0.012-in nickel-titanium wire; C, load-

olar; M2, second molar; M3, third molar; gf,
e max
made
first m
copy was carried out with hematoxylin. As a negative
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control, 0.5% bovine serum albumin in PBS was used
instead of the primary antiserum.

Statistical analyses

The values are represented as the mean � SEM for
each group. The data on tooth movement and body
weight were subjected to both analysis of variance
(2-way repeated measures ANOVA) and the Student t
test. The data on osteoclast numbers were analyzed
with both the 2-factor factorial ANOVA and the Stu-
dent t test. The data on root-resorptive areas were
subjected to the Student t test. A P value �.05 was
considered to be statistically significant.

RESULTS

The mean resonance frequency of the rat first molar
was 61.02 � 8.375 Hz (mean � SEM). The mean
displacement in resonance was 0.0014 � 0.002 mm,
and the average velocity was 0.27 � 0.018 mm per
second. The resonance frequency, displacement, and
velocity values for each rat are shown in the Table.

The average body weights of the rats increased
gradually and linearly in both the RV-group and the
C-group. There was no significant difference in body
weights between the 2 groups during the experimental
period.

Figure 4 shows the time course of tooth movement
in the 2 groups of animals. Statistically significant
differences in treatment and time were assessed by
2-way repeated measures ANOVA (P � .05). Further-
more, the extent of tooth movement on day 21 was
significantly greater by 15% in the RV-group than in
the C-group (P� .008, Student t test).

More osteoclasts were found on the alveolar bone
surfaces of the RV-group rats than on those of the
C-group rats (P � .08 for treatment by 2-factor facto-
rial ANOVA) (Fig 5, A and B). In the C-group, the
number of osteoclasts increased gradually, whereas

Table. Resonance frequency, velocity, and displace-
ment values of the maxillary first molars of rats

Rat
Resonant

frequency (Hz)
Velocity
(mm/s)

Displacement
(mm)

1 48.50 0.33 0.022
2 51.40 0.31 0.019
3 62.00 0.26 0.013
4 64.40 0.25 0.012
5 71.00 0.22 0.010
6 68.80 0.23 0.011

Average 61.02 0.27 0.014
Standard error 3.75 0.018 0.002
numerous osteoclasts were found on day 8 and per-
sisted until day 21 in the RV-group (Fig 5, C). In
addition, the number of osteoclasts was significantly
higher in the RV-group than in the C-group on day 8
(P � .05, Student t test).

RANKL-positive cells were observed in the PDLs
of both the RV-group and the C-group. RANKL im-
munostaining was observed in the osteoblasts and PDL
fibroblasts on the tension side. On the compression
side, RANKL immunostaining was observed in PDL
fibroblasts and multinucleated osteoclasts. RANKL
expression was stronger on the compression side than
on the tension side. In particular, on day 3, RANKL
expression on the compression side in the RV-group
was higher than that on the compression side in the
C-group (Fig 6). On days 8, 15, and 21, RANKL
immunostaining was observed on both the compression
side and the tension side in the RV-group and the

Fig 4. Time course of tooth movement in the RV-group
and the C-group. Tooth movement in both groups was
divided into 3 phases. The extent of tooth movement in
the RV-group was significantly higher than in the C-
group; P �.05 for treatment and time by 2-way re-
peated measures ANOVA. **P �.01 by the Student t
test. Each value represents the mean � SEM (n � 6).
Arrow indicates the timing of resonance vibration on
days 0, 8, and 15. Line with black circles, RV-group; line
with gray squares, C-group
C-group. However, there was no significant difference
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in the intensity of RANKL immunostaining between
the 2 groups. There was no histologic differences
between animals without tooth movement and RV-
treated animals without tooth movement.

Root resorption was observed on the root surface
on the compression side in both groups. Resorption
was observed not only in the cementum but also in
the dentin (Fig 7, A and B). In the quantitative

Fig 5. A and B, Histologic comparison of osteo
resonance vibration. TRAP staining was perfor
observed on the alveolar bone surface in the R
TRAP-positive multinucleated cells. C, Number
in the RV-group and the C-group. Gray, C-gr
2-factor factorial ANOVA. *P �.05 by Student
3-5).
evaluation, there was no significant difference in the
level of root resorption between the 2 groups on day
21 (Fig 7, C).

DISCUSSION

We stimulated the periodontal tissue by resonance
vibration to accelerate the speed of tooth movement and
shorten the treatment period. We have clearly demon-
strated the stimulatory effects of resonance vibration in

istribution on day 8 in rat PDLs with or without
any TRAP-positive multinucleated cells were

p (B) compared with the C-group (A). Arrows,
steoclasts at the compressed sides of the rats
black, RV-group. P �.05 between groups by
Each value represents the mean � SEM (n �
clast d
med. M
V-grou
s of o
oup;
t test.
accelerating the speed of tooth movement with no
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Fig 6. Comparison of RANKL distribution in rat PDLs with or without intermittent stimulation by
resonance vibration. Strong RANKL expression was observed on day 3 in the PDL cells of the
RV-group. A, RANKL immunostaining in the PDL tissue at the compressed side of the C-group on
day 3; B and G, RANKL immunostaining in the PDL tissue at the compressed side of the RV-group
on day 3; C and F, negative control (secondary antibody only); D, RANKL immunostaining in the PDL
tissue at the tension side of the C-group on day 3; E and H, RANKL immunostaining in the PDL
tissue at the tension side of the RV-group on day 3. Small arrows, RANKL immunostaining of

osteoclasts; large arrows, RANKL immunostaining of PDL fibroblasts
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collateral damage to periodontal tissues. In addition, we
have demonstrated the activation of the RANK-
RANKL signaling pathway in response to the loading
of resonance vibration.

In this study, we loaded the resonance vibration
onto the rats’ first molars to examine its influence on
orthodontic tooth movement. The appliance used to
induce tooth movement was simple, and it kept the
mouths of the rats clean. During the experiment, the
mean body weight of the rats increased gradually and
linearly; there was no significant difference between the
groups in this respect. The health and growth of the
animals were not affected by the anesthesia, nor were
they affected by the impression of the maxilla or the
application of resonance vibration.

We considered it necessary to measure the preex-
isting resonance frequency of each rat before loading
the resonance vibration. Nevertheless, we loaded all
rats with the average resonance frequency, to avoid the
potential adverse effects of anesthesia over several
hours. We measured the natural frequency of the rat

Fig 7. Microscopic observation of the mesiopa
and B, C-group on day 21. Hematoxylin and
compressed side in both groups. Arrow, ro
mesiopalatal root of the maxillary first molar on
� 4-5). Gray, C-group; black, RV-group. There
first molar according to the method reported by
Kurashima19 and Kato.20 The resonance frequency of
the tooth was measured by continuously transforming
the forced vibration. The resonance frequency—the
natural frequency—was defined as the maximum re-
corded velocity in the resonance curve. The resonance
vibration was considered to be the force that applied the
largest amplitude of vibration to the periodontal tissue.

It was reported that signaling molecules, such as
c-fos,13 MAPK,14 and nitric oxide15 are increased in the
PDL immediately after mechanical stimulation. There-
fore, we considered it possible to activate PDL cells
using an initial short-term stimulation. Stimulation was
applied for only 8 minutes. Loading a vibrational force
for 1.5 hours per day over 3 weeks was reported to give
about 1.3 to 1.4 times greater tooth movement than
loading a static force.21 However, the frequency and
duration of this type of treatment entail considerable
mental and physical stresses. Therefore, it is desirable
in the clinical setting to apply vibrational stimulation as
briefly as possible. We examined the effect of vibra-
tional stimulation for the shortest possible period of

oot of the maxillary first molar in A, RV-group
staining. Root resorption is observed at the

sorption. C, Area of root resorption in the
1. Each value represents the mean � SEM (n
o significant difference between the 2 groups.
latal r
eosin
ot re
day 2
application required to activate the PDL; this was
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determined to be 8 minutes in our pilot study. We used
vibrational stimulation in addition to the static force
applied by the orthodontic wire.

The vibration was applied once a week. The com-
plex of tooth and PDL is considered to be viscoelas-
tic.19 It was reported that an intermittent vibrating force
is mechanically more effective than a static force in
changing the PDL’s viscoelasticity, and that this effect
persists over a certain period of time.16 In our study, a
significant difference was noticed when the vibration
was applied once a week. Nonetheless, future studies
should examine the effects of vibration at intervals of
longer than a week.

It is generally considered that tooth movement
that is due to heavy orthodontic forces occurs in 3
phases.22-24 Our findings show these aspects of tooth
movement. It appears that the speed of tooth move-
ment greatly depends on the speed of alveolar bone
remodeling.

The speed of tooth movement was influenced
mainly by bone resorption, with osteoclasts induced on
the alveolar bone surface on the pressure side. There-
fore, we counted the multinuclear osteoclasts on the
alveolar bone surfaces during the final phase. In the
C-group, the number of multinuclear osteoclasts was
significantly low on day 8 and increased in a time-
dependent manner. On the other hand, numerous
multinuclear osteoclasts were observed in the RV-
group from days 8 to 21. This result suggests that
differences in the appearance of multinuclear oste-
oclasts can affect the speed of tooth movement during
the final phase.

Recently, RANKL has been reported as an essential
factor for osteoclast formation, function, and survival.25-27

Therefore, we examined RANKL expression in the PDL
after resonance vibrational stimulation. Our results indi-
cate that RANKL is expressed in osteoblasts, PDL fibro-
blasts, and multinucleated osteoclasts. Furthermore,
RANKL expression was expressed strongly on the com-
pression side in the RV-group compared with the C-
group. It is generally accepted that RANKL is expressed
in stromal cells, fibroblasts, and osteoblasts. However,
several reports showed that RANKL is expressed in
osteoclasts.28,29 Kartsogiannis et al28 reported that the
levels of RANKL mRNA and protein appear to correlate
with resorptive capability, whereby osteoclasts on actively
resorbed surfaces display high-level RANKL expression.
Our findings suggest that resonance vibration stimulates
the resorptive activities of osteoclasts. The number of
multinuclear osteoclasts on day 8 was 1.7 times higher in
the RV-group than in the C-group. These findings suggest
that resonance vibration stimulates the differentiation of

monocytes/macrophages from hematopoietic cells by, for
example, increasing the blood flow. Moreover, increased
RANKL expression in PDL fibroblasts and osteoclasts
might induce and activate osteoclasts. Consequently, al-
veolar bone remodeling could be enhanced.

Noteworthily, resonance vibration can be applied as
a mechanical stress on PDL cells. Ultrasonic vibration
is a form of vibrational stimulation that is similar to
resonance vibration. It has been reported that ultrasonic
vibration accelerates tooth movement.30 However, ul-
trasonic vibration of teeth might be associated with
certain hazards, such as thermal damage to the dental
pulp.31 On the other hand, we believe that the reso-
nance vibration we used in this study is efficient and
can be applied to the PDL as a mechanical stress that
does not cause additional damage to the periodontal
tissues.

Ultrasound is used to treat bone fractures in ortho-
pedics. The effects of ultrasound have been shown in
soft tissues and include angiogenesis,32 increased pro-
tein synthesis in fibroblasts,33 and increased blood flow
velocity in the muscular distribution artery.34 It has also
been reported that ultrasound effects bone repair.35,36

The exact cellular mechanism underlying the therapeu-
tic action of ultrasound remains unknown, although the
following hypotheses have been proposed: (1) a direct
effect on the permeability of the cell membrane and
second messenger adenylate cyclase activity and
changes in ion or protein transport, which could modify
the intracellular signals for gene expression37,38; (2)
activation of the “stretch receptor” type of cation
channel and changes in the cation concentration, so as
to modify the intracellular signals that regulate gene
expression39; (3) transferred mechanical energy acti-
vates changes in the attachment of the cytoskeleton to
the extracellular matrix40; and (4) the induction of
electrical currents in the bone. A rise in temperature
might have an effect on cell metabolism.34 It is specu-
lated that some of the above possible events could be
involved in the underlying mechanism in the effect of
resonance vibration on tooth movement, however, the
detailed mechanism has not been reported until now.
Further studies are required to elucidate these phenom-
ena.

We have already mentioned the effect of resonance
vibration on tooth movement. It is thought that odon-
toclasts, which have the same origin as osteoclasts, are
induced by the same mechanism. In orthodontic treat-
ment, root resorption by odontoclasts is a form of
severe additional damage. We examined whether root
resorption was accelerated in the same way as tooth
movement was accelerated by resonance vibration.
Large lacunae were found in the 2 groups, but no severe

resorption, which was observed with forces of higher
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magnitude, was seen. So we believe that the force of the
12.8 gram force was the optimal force level to move the
rat molars.

We found no significant difference in root resorp-
tion between the 2 groups. However, this investigation
indicated a trend toward less root resorption in the
RV-group. Root resorption during orthodontic tooth
movement is generally thought to occur because hya-
linized tissue, which results from blood flow obstruc-
tion at the compression side, accelerates root resorp-
tion.41-43 Therefore, we hypothesized that resonance
vibration might prevent blood flow obstruction and
hyalinization at the compression side. Although several
similarities have been reported between osteoclasts and
odontoclasts,44 the differences in their differentiation
and resorption activities are not clearly known. Our
results suggest that resonance vibration affects oste-
oclasts but not odontoclasts during experimental tooth
movement in vivo. Therefore, the mechanism by which
resonance vibration reduces root resorption merits fur-
ther investigation.

CONCLUSIONS

The application of resonance vibration might accel-
erate orthodontic tooth movement via enhanced
RANKL expression in the PDL with no additional
damage to periodontal tissues, such as root resorption.

We thank Drs Yoshinobu Shimizu, Tokushi Emata,
Naoto Haruyama, Naoya Sakamoto, and Mr Toshihiro
Onodera for providing valuable advice.
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